Copied to
clipboard

G = C42:21D14order 448 = 26·7

21st semidirect product of C42 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42:21D14, C14.732+ 1+4, (C2xQ8):9D14, (C4xC28):33C22, C22:C4:35D14, C4.4D4:13D7, D14:3Q8:31C2, C23:D14.6C2, (C2xD4).111D14, C42:D7:36C2, C4:Dic7:42C22, (Q8xC14):15C22, Dic7:4D4:32C2, D14.23(C4oD4), D14.D4:44C2, (C2xC28).632C23, (C2xC14).223C24, Dic7:C4:67C22, (C4xDic7):57C22, C2.76(D4:6D14), C23.D7:34C22, C23.45(C22xD7), D14:C4.136C22, C7:8(C22.45C24), (D4xC14).211C22, C23.D14:40C2, (C22xC14).53C23, (C23xD7).66C22, C22.244(C23xD7), C23.18D14:25C2, (C2xDic7).255C23, (C22xDic7):28C22, (C22xD7).217C23, C2.79(D7xC4oD4), (D7xC22:C4):19C2, C14.190(C2xC4oD4), (C7xC4.4D4):15C2, (C2xC4xD7).215C22, (C2xC4).74(C22xD7), (C7xC22:C4):31C22, (C2xC7:D4).61C22, SmallGroup(448,1132)

Series: Derived Chief Lower central Upper central

C1C2xC14 — C42:21D14
C1C7C14C2xC14C22xD7C23xD7D7xC22:C4 — C42:21D14
C7C2xC14 — C42:21D14
C1C22C4.4D4

Generators and relations for C42:21D14
 G = < a,b,c,d | a4=b4=c14=d2=1, ab=ba, cac-1=ab2, ad=da, cbc-1=dbd=a2b, dcd=c-1 >

Subgroups: 1228 in 248 conjugacy classes, 95 normal (27 characteristic)
C1, C2, C2, C2, C4, C22, C22, C7, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, D7, C14, C14, C14, C42, C42, C22:C4, C22:C4, C4:C4, C22xC4, C2xD4, C2xD4, C2xQ8, C24, Dic7, C28, D14, D14, C2xC14, C2xC14, C2xC22:C4, C42:C2, C4xD4, C22wrC2, C22:Q8, C22.D4, C4.4D4, C42:2C2, C4xD7, C2xDic7, C2xDic7, C7:D4, C2xC28, C2xC28, C7xD4, C7xQ8, C22xD7, C22xD7, C22xC14, C22.45C24, C4xDic7, Dic7:C4, C4:Dic7, D14:C4, C23.D7, C23.D7, C4xC28, C7xC22:C4, C2xC4xD7, C22xDic7, C2xC7:D4, D4xC14, Q8xC14, C23xD7, C42:D7, C23.D14, D7xC22:C4, Dic7:4D4, D14.D4, C23.18D14, C23:D14, D14:3Q8, C7xC4.4D4, C42:21D14
Quotients: C1, C2, C22, C23, D7, C4oD4, C24, D14, C2xC4oD4, 2+ 1+4, C22xD7, C22.45C24, C23xD7, D4:6D14, D7xC4oD4, C42:21D14

Smallest permutation representation of C42:21D14
On 112 points
Generators in S112
(1 80 17 35)(2 74 18 29)(3 82 19 37)(4 76 20 31)(5 84 21 39)(6 78 15 33)(7 72 16 41)(8 83 25 38)(9 77 26 32)(10 71 27 40)(11 79 28 34)(12 73 22 42)(13 81 23 36)(14 75 24 30)(43 90 108 97)(44 58 109 65)(45 92 110 85)(46 60 111 67)(47 94 112 87)(48 62 99 69)(49 96 100 89)(50 64 101 57)(51 98 102 91)(52 66 103 59)(53 86 104 93)(54 68 105 61)(55 88 106 95)(56 70 107 63)
(1 57 12 90)(2 65 13 98)(3 59 14 92)(4 67 8 86)(5 61 9 94)(6 69 10 88)(7 63 11 96)(15 62 27 95)(16 70 28 89)(17 64 22 97)(18 58 23 91)(19 66 24 85)(20 60 25 93)(21 68 26 87)(29 109 36 51)(30 45 37 103)(31 111 38 53)(32 47 39 105)(33 99 40 55)(34 49 41 107)(35 101 42 43)(44 81 102 74)(46 83 104 76)(48 71 106 78)(50 73 108 80)(52 75 110 82)(54 77 112 84)(56 79 100 72)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 7)(2 6)(3 5)(9 14)(10 13)(11 12)(15 18)(16 17)(19 21)(22 28)(23 27)(24 26)(29 33)(30 32)(34 42)(35 41)(36 40)(37 39)(43 100)(44 99)(45 112)(46 111)(47 110)(48 109)(49 108)(50 107)(51 106)(52 105)(53 104)(54 103)(55 102)(56 101)(57 70)(58 69)(59 68)(60 67)(61 66)(62 65)(63 64)(71 81)(72 80)(73 79)(74 78)(75 77)(82 84)(85 94)(86 93)(87 92)(88 91)(89 90)(95 98)(96 97)

G:=sub<Sym(112)| (1,80,17,35)(2,74,18,29)(3,82,19,37)(4,76,20,31)(5,84,21,39)(6,78,15,33)(7,72,16,41)(8,83,25,38)(9,77,26,32)(10,71,27,40)(11,79,28,34)(12,73,22,42)(13,81,23,36)(14,75,24,30)(43,90,108,97)(44,58,109,65)(45,92,110,85)(46,60,111,67)(47,94,112,87)(48,62,99,69)(49,96,100,89)(50,64,101,57)(51,98,102,91)(52,66,103,59)(53,86,104,93)(54,68,105,61)(55,88,106,95)(56,70,107,63), (1,57,12,90)(2,65,13,98)(3,59,14,92)(4,67,8,86)(5,61,9,94)(6,69,10,88)(7,63,11,96)(15,62,27,95)(16,70,28,89)(17,64,22,97)(18,58,23,91)(19,66,24,85)(20,60,25,93)(21,68,26,87)(29,109,36,51)(30,45,37,103)(31,111,38,53)(32,47,39,105)(33,99,40,55)(34,49,41,107)(35,101,42,43)(44,81,102,74)(46,83,104,76)(48,71,106,78)(50,73,108,80)(52,75,110,82)(54,77,112,84)(56,79,100,72), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(9,14)(10,13)(11,12)(15,18)(16,17)(19,21)(22,28)(23,27)(24,26)(29,33)(30,32)(34,42)(35,41)(36,40)(37,39)(43,100)(44,99)(45,112)(46,111)(47,110)(48,109)(49,108)(50,107)(51,106)(52,105)(53,104)(54,103)(55,102)(56,101)(57,70)(58,69)(59,68)(60,67)(61,66)(62,65)(63,64)(71,81)(72,80)(73,79)(74,78)(75,77)(82,84)(85,94)(86,93)(87,92)(88,91)(89,90)(95,98)(96,97)>;

G:=Group( (1,80,17,35)(2,74,18,29)(3,82,19,37)(4,76,20,31)(5,84,21,39)(6,78,15,33)(7,72,16,41)(8,83,25,38)(9,77,26,32)(10,71,27,40)(11,79,28,34)(12,73,22,42)(13,81,23,36)(14,75,24,30)(43,90,108,97)(44,58,109,65)(45,92,110,85)(46,60,111,67)(47,94,112,87)(48,62,99,69)(49,96,100,89)(50,64,101,57)(51,98,102,91)(52,66,103,59)(53,86,104,93)(54,68,105,61)(55,88,106,95)(56,70,107,63), (1,57,12,90)(2,65,13,98)(3,59,14,92)(4,67,8,86)(5,61,9,94)(6,69,10,88)(7,63,11,96)(15,62,27,95)(16,70,28,89)(17,64,22,97)(18,58,23,91)(19,66,24,85)(20,60,25,93)(21,68,26,87)(29,109,36,51)(30,45,37,103)(31,111,38,53)(32,47,39,105)(33,99,40,55)(34,49,41,107)(35,101,42,43)(44,81,102,74)(46,83,104,76)(48,71,106,78)(50,73,108,80)(52,75,110,82)(54,77,112,84)(56,79,100,72), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(9,14)(10,13)(11,12)(15,18)(16,17)(19,21)(22,28)(23,27)(24,26)(29,33)(30,32)(34,42)(35,41)(36,40)(37,39)(43,100)(44,99)(45,112)(46,111)(47,110)(48,109)(49,108)(50,107)(51,106)(52,105)(53,104)(54,103)(55,102)(56,101)(57,70)(58,69)(59,68)(60,67)(61,66)(62,65)(63,64)(71,81)(72,80)(73,79)(74,78)(75,77)(82,84)(85,94)(86,93)(87,92)(88,91)(89,90)(95,98)(96,97) );

G=PermutationGroup([[(1,80,17,35),(2,74,18,29),(3,82,19,37),(4,76,20,31),(5,84,21,39),(6,78,15,33),(7,72,16,41),(8,83,25,38),(9,77,26,32),(10,71,27,40),(11,79,28,34),(12,73,22,42),(13,81,23,36),(14,75,24,30),(43,90,108,97),(44,58,109,65),(45,92,110,85),(46,60,111,67),(47,94,112,87),(48,62,99,69),(49,96,100,89),(50,64,101,57),(51,98,102,91),(52,66,103,59),(53,86,104,93),(54,68,105,61),(55,88,106,95),(56,70,107,63)], [(1,57,12,90),(2,65,13,98),(3,59,14,92),(4,67,8,86),(5,61,9,94),(6,69,10,88),(7,63,11,96),(15,62,27,95),(16,70,28,89),(17,64,22,97),(18,58,23,91),(19,66,24,85),(20,60,25,93),(21,68,26,87),(29,109,36,51),(30,45,37,103),(31,111,38,53),(32,47,39,105),(33,99,40,55),(34,49,41,107),(35,101,42,43),(44,81,102,74),(46,83,104,76),(48,71,106,78),(50,73,108,80),(52,75,110,82),(54,77,112,84),(56,79,100,72)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,7),(2,6),(3,5),(9,14),(10,13),(11,12),(15,18),(16,17),(19,21),(22,28),(23,27),(24,26),(29,33),(30,32),(34,42),(35,41),(36,40),(37,39),(43,100),(44,99),(45,112),(46,111),(47,110),(48,109),(49,108),(50,107),(51,106),(52,105),(53,104),(54,103),(55,102),(56,101),(57,70),(58,69),(59,68),(60,67),(61,66),(62,65),(63,64),(71,81),(72,80),(73,79),(74,78),(75,77),(82,84),(85,94),(86,93),(87,92),(88,91),(89,90),(95,98),(96,97)]])

67 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O7A7B7C14A···14I14J···14O28A···28R28S···28X
order122222222244444444444444477714···1414···1428···2828···28
size11114414141414222244414141414282828282222···28···84···48···8

67 irreducible representations

dim1111111111222222444
type++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2D7C4oD4D14D14D14D142+ 1+4D4:6D14D7xC4oD4
kernelC42:21D14C42:D7C23.D14D7xC22:C4Dic7:4D4D14.D4C23.18D14C23:D14D14:3Q8C7xC4.4D4C4.4D4D14C42C22:C4C2xD4C2xQ8C14C2C2
# reps122222112138312331612

Matrix representation of C42:21D14 in GL6(F29)

1700000
0170000
0028000
0002800
00002827
000001
,
1280000
0280000
0028000
0002800
0000170
0000017
,
100000
2280000
0010800
0012100
000010
00002828
,
100000
2280000
00222600
0016700
000010
000001

G:=sub<GL(6,GF(29))| [17,0,0,0,0,0,0,17,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,27,1],[1,0,0,0,0,0,28,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,17,0,0,0,0,0,0,17],[1,2,0,0,0,0,0,28,0,0,0,0,0,0,10,12,0,0,0,0,8,1,0,0,0,0,0,0,1,28,0,0,0,0,0,28],[1,2,0,0,0,0,0,28,0,0,0,0,0,0,22,16,0,0,0,0,26,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C42:21D14 in GAP, Magma, Sage, TeX

C_4^2\rtimes_{21}D_{14}
% in TeX

G:=Group("C4^2:21D14");
// GroupNames label

G:=SmallGroup(448,1132);
// by ID

G=gap.SmallGroup(448,1132);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,758,387,100,346,136,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,a*b=b*a,c*a*c^-1=a*b^2,a*d=d*a,c*b*c^-1=d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<